Image Recognition

  • 0

Image Recognition

Category : Uncategorized

 

Threshold

 Sebelum melangkah pada proses pendeteksian sisi terlebih dahulu citra diubah ke dalam citra yang hanya terdiri dari dua warna saja yaitu warna hitam yang  menampakkan sisi objek dan yang lainnya akan dibuat putih atau sebaliknya. Untuk membuat citra dua warna dibutuhkan suatu teknik yang disebut Thresholding. Secara umum citra yang di thresholding dapat didefenisikan :

g(x,y) merupakan fungsi citra setelah di threshold, f(x,y) merupakan fungsi citra sebelum dilakukan thresholding, 0 berkoresponden dengan dengan piksel yang dianggap sebagai latar dan 1 berkoresponden dengan piksel yang dianggap sebagai objek, t merupakan nilai ambang yang dipilih.

 

Deteksi Tepian

            Didefenisikan sisi atau edge sebagai batas dua daerah dengan ciri tingkat keabuan yang relatif berbeda. Diasumsikan bahwa ‘daerah’ tersebut bersifat homogen sehingga perubahan antara dua daerah dapat ditentukan pada baris ketidakkontinyuan tingkat keabuan. secara mendasar ide ditekankan pada teknik deteksi sisi adalah perhitungan operator turunan local [GON87].

Dengan analisis vektor diketahui bahwa vektor titik G menunjukkan perubahan rate maksimum f pada lokasi (x,y). Secara umum gradien dinyatakan dengan G[(x,y)] dimana :

G[f(x,y)] = [Gx2 + Gy2]1/2

 

 

jumlah tersebut sama dengan maksimum rate dari peningkatan f (x,y) perunit jarak pada arah G. arah vector gradien juga merupakan ukuran penting, misalkan (x,y) menyatakan arah sudut G pada lokasi (x,y), sesuai dengan analisis vektor bahwa :

(x,y) = tan-1 (Gy / Gx)  

dimana sudut diukur dengan aksis x. penghitungan gradien dengan penurunan parsial  dan  pada tiap lokasi piksel. Komponen vektor gradien pada arah x dinyatakan sebagai :

Gx = (x7 + 2x8 + x9) – (x1 + 2x2 +x3)  

Dan

Gy = (x3 + 2x6 + x9) – (x1 + 2x4+x7)  

Dengan sebuah daerah 3×3 pada penghitungan gradien memiliki keuntungan peningkatan smoothing diatas operator 2×2, dan cenderung mengurangi tingkat kesensitifan operasi penurunan terhadap noise. [GON87]

 

Respon dari dua operator pada beberapa titik (x,y) dikombinasikan dengan menggunakan persamaan tersebut untuk mendapatkan gradien pada titik tersebut. Mengkonvolusikan matriks-matriks tersebut dengan sebuah citra f(x,y) menghasilkan gradien pada seluruh titik-titik pada citra, hasilnya sering dinyatakan sebagai gradien citra.

 

Operator Gradient

            Didalam menggunakan metode deteksi dengan operator gradien ini terdapat bermacam-macam metode lagi di dalamnya diantaranya yang dipakai disini adalah  operator Prewitt dan operator Roberts, yaitu :

  • Operator Prewitt 3×3 dengan operaor kernel sebagai berikut :

  • Operator Roberts 2×2 dengan operator kernel sebagai berikut :

Pada jenis operator Prewitt terdapat satu elemen yang mempunyai garis bawah, ini menunjukkan titik dimana elemen tersebut dikenai operasi, kecuali pada operator Roberts, operator sebelumnya mempunyai posisi elemen tepat ditengah-tengah kernel.

Perhitungan yang dilakukan pada kernel adalah untuk menghitung perubahan salah satu titik di dalam matriks citra (titik ditengah) . Adapun perhitungan operasi kernel terjadi adalah sebagai berikut:

A[e] = A[a] * B[a] + A[b] * B[b] + A[c] * B[c] + A[d] * B[d] +  A[e] * B[e] +

A[f] * B[f] + A[g] * B[g] + A[h] * B[h] + A[i] + B[i]

Hasil perhitungan A[e] tidak selalu berada di dalam daerah nilai citra (0 – 255). Hal ini dapat diatasi dengan memberikan batasan-batasan yang jelas pada saat perhitungan selesai dilakukan, yaitu :

  • A[e] harus selalu bernilai mutlak (absolut). Dengan kata lain selalu lebih besar dari nol.
  • Apabila nilainya lebih besar daerah nilai citra maka A[e] dianggap mempunyai nilai terbesar dari daerah nilai yaitu 255.

 

Sistem Pengenalan Pola

Secara umum teknik pengenalan pola bertujuan untuk mengklasifikasi dan mendeskripsi pola atau obyek kompleks melalui pengukuran sifat-sifat atau ciri-ciri objek tersebut. Terdapat tiga pendekatan pada pengenalan pola yaitu pendekatan statistika, pendekatan struktural, dan pendekatan neural. Dalam tugas akhir ini metoda yang akan dipakai adalah pengenalan pola dengan pendekatan statistika, sehingga pembahasan selanjutnya khusus untuk pengenalan pola dengan pengenalan statistika.

Sistem pengenalan pola dengan pendekatan statistika ini akan mengalami empat proses, yaitu digitisasi, segmentasi dan preproses, ekstraksi ciri, serta klasifikasi [YOU92]. Dimana proses-proses ini dapat digambarkan sebagai berikut :

 

Gambar Proses pengenalan pola dengan pendekatan statistika

 

Proses digitisasi

Suatu pola digital dapat diperoleh secara otomatis dari sistem penangkap pola digital (digital image acquisition system atau digitizer) yang melakukan penjelajahan pola dan bentuk suatu matriks di mana elemen-elemennya menyatakan nilai intensitas cahaya pada suatu himpunan diskrit dari titik-titik.

Gambar  elemen-elemen dari sistem pengolah pola

 

Segmentasi dan Praproses

 

pola yang telah dibuat dalam bentuk digit tersebut kemudian diproyeksikan secara vertikal dan horisontal. Proyeksi horisontal didefenisikan sebagai berikut YOU92]:

Dan proyeksi vertikalnya adalah [YOU92]:

 

Dimana g ( i , j ) adalah satu atau nol, dengan baris dan j kolom. Selain di proyeksikan, pola yang telah didigitisasi tersebut juga disegmentasikan.

 

Ekstraksi ciri

Suatu ciri pola diekstraksi dari momen proyeksi vertikal dan horisontal. Selain itu beberapa pengukuran statistik telah dilakukan pada pengenalan pola ini, yaitu dengan menggunakan sembilan ciri [YOU92] yang terdiri dari :

  • Kurtosis, yaitu derajat kelancipan suatu distribusi jika dibandingkan dengan distribusi normal, yang dapat diukur secara horisontal dan vertikal. Kurtosis horisontal mempunyai persamaan [YOU92]:

 

dengan KH adalah kurtosis horisontal, i  baris adalah 8,5 dan h(i) merupakan hasil proyeksi horisontal.

Sedangkan kurtosis vertikal mempunyai persamaan [YOU92]:

dengan KV adalah kurtosis vertikal, j kolom, adalah 8,5 dan v(j) merupakan hasil proyeksi vertikal.

  • Skewness adalah derajat asimetri suatu distribusi. Dalam hubungan ini ada tiga hal, yaitu :
  1. jika distribusinya simetris, kemiringannya nol.
  2. jika distribusinya mempunyai ekor ke kanan, kemiringannya positif.
  3. jika distribusinya mempunyai ekor ke kiri, kemiringannya negatif.

 

Skewness terdiri dari skewness horisontal dan skewness vertikal. Persamaan skewness horisontal adalah :

 

dengan SH adalah skewness horisontal, i  baris adalah 8,5 dan h(i) merupakan hasil proyeksi horisontal.

Sedangkan skewness vertikal mempunyai persamaan [YOU92]:

 

dengan SV adalah skewness vertikal, j kolom, adalah 8,5 dan v(j) merupakan hasil proyeksi vertikal.

  • Skewness dan kurtosis normalisasi yang terhubung secara simetri pada distribusi terdiri dari [YOU92] :

 

dengan NH adalah normalisasi horisontal, i  baris, adalah 8,5 dan h(i) merupakan hasil proyeksi horisontal.

Dan persamaan normalisasi vertikalnya adalah [YOU92] :

 

 

dengan NV adalah normalisasi vertikal, j kolom, adalah 8,5 dan v(j) merupakan hasil proyeksi vertikal.

  • Mengukur hubungan momen proyeksi vertikal dan horisontal untuk huruf yang sama, dimana persamaan momen pertamanya adalah [YOU92]:

dengan LW adalah momen proyeksi pertama, , i  baris, dan  adalah 8,5 dan h(i) merupakan hasil proyeksi horisontal, sedangkan v(j) merupakan hasil dari proyeksi vertikal. Dan persamaan momen keduanya adalah [YOU92]:

 

dengan VR adalah momen proyeksi kedua , i  baris, dan  adalah 8,5 dan h(i) merupakan hasil proyeksi horisontal, sedangkan v(j) merupakan hasil dari proyeksi vertikal. Dan persamaan momen keempatnya adalah [YOU92]:

 

dengan VV adalah momen proyeksi keempat, , i  baris, dan  adalah 8,5 dan h(i) merupakan hasil proyeksi horisontal, sedangkan v(j) merupakan hasil dari proyeksi vertikal.

 

Klasifikasi Pola

Proses klasifikasi pola ini dimulai dengan mempelajari pola yang akan diklasifikasi dan membandingkannya dengan informasi referensi penunjang. Sehingga dapat dibentuk suatu set sample yang elemennya terdiri dari piksel-piksel yang mewakili setiap kategori objek yang telah diidentifikasi kemudian proses klasifikasi pola ini diselesaikan menggunakan jarak kuadrat mahalanobis [MOR90]. Jarak umum dari vektor observasi ke kelompok wi dengan rata-rata ini dan matriks kovarian yang diberikan oleh [MOR92] :

 

vektor  diklasifikasikan ke dalam kelompok k dengan menentukan nilai terkecil dari . Aturan ini berdasarkan anggapan bahwa probabilitas awal semua kelas adalah sama.

Referensi : [pdf]

Facebook Comments

-- Download Image Recognition as PDF --



Leave a Reply

Archives