Category Archives: DSP

  • 0

Karya Seni dengan Matlab

Category : DSP

Matlab merupakan Matrix Laboratory, yang merupakan laboratorium riset berbasis Matrik. Dalam Artian apapun obyek pembahasan selalu dinyatakan dalam bentuk Matrik (Array). Rupanya gambar sebagai karya seni juga dapat dinyatakan dengan matrik, sebelum belajar bagaimana membuat Program dengan Matlab, saya akan tunjukkan beberapa Karya Seni yang dibuat dengan Matlab. Sebagai tahap awal belajar Matlab, kita bisa tunjukkan apa saja yang bisa dibuat dengan Matlab. Tentu ada banyak script Matlab didalamnya, lupakan dulu teori dan coding yang njlimet, nikmati aja dulu seninya dengan Matlab.

  1. Speaker Identification based on Wavelet Transform using Neuro-Fuzzy Algorithmneuro_fuzzy
  2. Optimasi Pembagian Beban Pembangkit menggunakan Modified Coarse to Fine Search (MCFS)smart_grid
  3. Modul Praktikum Lab DSPmodul_adsp
  4. Block Matching Video Compression Systemcompresi
  5. Secure Communication based on DSP Technologycomdemo
  6. Modulation Classificationmodclass
  7. Optimasi Technical Indicator berbasis Algoritma Genetikaoptimum
  8. Scrambler dan Descramblerscrambler

Sengaja untuk script program dan konsep teorinya tidak diulas dulu, karena bagi orang tertentu konsep teori dan script program agak sulit dicerna. Bagi orang yang pencernaannya bagus tentu ngga masalah. Seperti statement seperti ini misalnya, “Apa sih indahnya lukisan monalisa yang sangat terkenal itu, kalau lukisan itu hanya sekedar kumpulan sinus dan cosinus?”. Ini kan susah dicerna. Bagi yang ingin diskusi lebih lanjut dapat mengirimkan pesan disini atau jalur pribadi. Tentu saja saya sangat menghargai diskusi ilmiah, daripada berdebat, apalagi debat kusir. Mohon maaf saya bukan pak kusir.

-- Download Karya Seni dengan Matlab as PDF --

  • 0

The Scientist & Engineer’s Guide to Digital Signal Processing

Category : DSP

by Steven W. Smith

The Scientist & Engineer’s Guide to Digital Signal Processing, by Steven W. Smith, Ph.D, provides a practical introduction to Digital Signal Processing. Covering a wide range of topics, this book is an ideal introductory text for those new to DSP, and an excellent reference for more experienced users. Begin today to learn more about this powerful technology!

Please Note: Acrobat Reader 5.0 contains a bug that prevents the formulas in these pdf files from displaying correctly. The bug was corrected in the latest release, which can be obtained from Adobe’s web site.

You may download the book in its entirety here in zip format, The Scientist & Engineer’s Guide to Digital Signal Processing (zip), or by chapter below.

Table of Contents (pdf)



Digital Filters


Complex Techniques

Glossary (pdf)

Index (pdf)


-- Download The Scientist & Engineer's Guide to Digital Signal Processing as PDF --

  • 0

A Beginner’s Guide to Digital Signal Processing (DSP)

Category : DSP

The following document describes the basic concepts of Digital Signal Processing (DSP) and also contains a variety of Recommended Reading links for more in-depth information.

Digital Signal Processor (DSP) in MP3 Demo

What is a DSP?

Digital Signal Processors (DSP) take real-world signals like voice, audio, video, temperature, pressure, or position that have been digitized and then mathematically manipulate them. A DSP is designed for performing mathematical functions like “add”, “subtract”, “multiply” and “divide” very quickly.

Signals need to be processed so that the information that they contain can be displayed, analyzed, or converted to another type of signal that may be of use. In the real-world, analog products detect signals such as sound, light, temperature or pressure and manipulate them. Converters such as an Analog-to-Digital converter then take the real-world signal and turn it into the digital format of 1’s and 0’s. From here, the DSP takes over by capturing the digitized information and processing it. It then feeds the digitized information back for use in the real world. It does this in one of two ways, either digitally or in an analog format by going through a Digital-to-Analog converter. All of this occurs at very high speeds.

To illustrate this concept, the diagram below shows how a DSP is used in an MP3 audio player. During the recording phase, analog audio is input through a receiver or other source. This analog signal is then converted to a digital signal by an analog-to-digital converter and passed to the DSP. The DSP performs the MP3 encoding and saves the file to memory. During the playback phase, the file is taken from memory, decoded by the DSP and then converted back to an analog signal through the digital-to-analog converter so it can be output through the speaker system. In a more complex example, the DSP would perform other functions such as volume control, equalization and user interface.

A DSP’s information can be used by a computer to control such things as security, telephone, home theater systems, and video compression. Signals may be compressed so that they can be transmitted quickly and more efficiently from one place to another (e.g. teleconferencing can transmit speech and video via telephone lines). Signals may also be enhanced or manipulated to improve their quality or provide information that is not sensed by humans (e.g. echo cancellation for cell phones or computer-enhanced medical images). Although real-world signals can be processed in their analog form, processing signals digitally provides the advantages of high speed and accuracy.

Because it’s programmable, a DSP can be used in a wide variety of applications. You can create your own software or use software provided by ADI and its third parties to design a DSP solution for an application.

For more detailed information about the advantages of using DSP to process real-world signals, please read Part 1 of the article from Analog Dialogue titled: Why Use DSP? Digital Signal Processing 101- An Introductory Course in DSP System Design.


What’s Inside a DSP?

A DSP contains these key components:

  • Program Memory: Stores the programs the DSP will use to process data
  • Data Memory: Stores the information to be processed
  • Compute Engine: Performs the math processing, accessing the program from the Program Memory and the data from the Data Memory
  • Input/Output: Serves a range of functions to connect to the outside world

Recommended Reading

For more specific information about ADI Processors and Precision Analog Microcontrollers we invite you to explore the following:

Digital Signal Processing is a complex subject that can overwhelm even the most experienced DSP professionals. Although we have provided a general overview, Analog Devices offers the following resources that contain more extensive information about Digital Signal Processing:

DSP workshops are a very fast and efficient way to learn how to use Analog Devices DSP chips. The workshops are designed to develop a strong working knowledge of Analog Devices’ DSP through lecture and hands-on exercises. For schedule and registration information, visit the Learning and Development page.

-- Download A Beginner's Guide to Digital Signal Processing (DSP) as PDF --

Fatal error: Call to undefined function weblizar_navigation() in /home/sloki/user/k8474287/sites/ on line 23